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José Escolanoa,b,�, Finn Jacobsena, José J. Lópezb
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Abstract

The finite-difference time-domain (FDTD) method provides a simple and accurate way of solving initial boundary value

problems. However, most acoustic problems involve frequency dependent boundary conditions, and it is not easy to

include such boundary conditions in an FDTD model. Although solutions to this problem exist, most of them have high

computational costs, and stability cannot always be ensured. In this work, a solution is proposed based on ‘‘mixing

modelling strategies’’; this involves separating the FDTD mesh and the boundary conditions (a digital filter representation

of the impedance) and combining them into a global solution. This solution is based on an interaction model that involves

wave digital filters. The proposed method is validated with several test cases.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical calculations of sound fields in complex enclosures must take account of aspects as for example
geometric shape and properties of materials. The current power of computers makes it possible to approach
the solution of such problems with several methods. One important time-domain method is known as the
finite-difference time-domain (FDTD) method [1,2]. This method provides a simple and accurate solution with
relatively low computational cost. However, one of its handicaps is that it is fairly complicated to take account
of frequency dependent complex impedance boundary conditions, which is important, e.g., in room acoustics
[3] and in outdoor sound propagation [4]. A review of time-domain impedance boundary conditions can be
found in a paper by Fung and Ju [5].

Most time-domain impedance models are based on a modification of the wave equation at the mesh points
where the impedance is situated [6,7]; and to define a general method for any analytical expression for the
impedance and ensure its stability is not a simple task. The method presented in this paper combines an FDTD
mesh with a digital filter representation of the boundary condition. This combination of simulation methods is
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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known in some contexts as ‘‘mixing modelling strategies’’ [8]; this means that a combination of method can
improve the entire method. However, as will become clear, this combination cannot be made directly because
of stability problems. This will be solved by using a wave digital filter (WDF) as a common interface [9].
For simplicity, the theory presented in this paper is for 2D problems. However, it is straightforward to extend
it to 3D.
2. FDTD theory

The FDTD method, as first proposed by Yee [10], is a simple and elegant way of discretizing the differential
form of Maxwell’s equations. In FDTD modelling of wave equations, the space solution is discretized using
the ‘‘Yee cell’’, and the vector component of the electrical and magnetic field are distributed around the unit
cell so as to allow the differential operators to be approximated by second-order centred finite differences that
combine to second-order derivatives. A similar algorithm has been derived for sound fields [11]. Although
improved and more accurate FDTD algorithms have been developed for aeroacoustic applications (e.g., based
on approximations of higher-order, unstaggered meshes, upwind schemes[12,13]), Yee’s staggered algorithm
remains an economical and robust way to carry out the FDTD algorithm [14], giving a compromise between
accuracy and efficiency. This scheme has been widely used in fields such as room acoustic applications
[2,3,15,16], musical sound synthesis [17–19], and outdoor sound propagation [20–22].

In the staggered FDTD in acoustics, the scalar pressure and the three components of the particle velocity
are distributed around an acoustic Yee unit cell [11], which is similar to the original electromagnetic FDTD
cell, but based on conservation of mass and momentum (see Fig. 1),

qpðr; tÞ

qt
¼ �r0c

2r � uðr; tÞ, (1)

r0
quðr; tÞ
qt
¼ �rpðr; tÞ, (2)

where p is the sound pressure, u is the acoustic particle velocity, r is the position, t is the time, c is the speed of
sound, and r0 is the density of air.

The FDTD method studied in this paper uses a second-order central finite-difference approach to the
derivatives [23]. In Cartesian coordinates Eqs. (1) and (2) become (in 2D) the following system of discretized
equations:

pði; j; nþ 1Þ ¼ pði; j; nÞ �
r0c

2Dt

Dx
½uxði þ

1
2
; j; nþ 1

2
Þ � uxði �

1
2
; j; nþ 1

2
Þ� �

r0c
2Dt

Dy
½uyði; j þ 1

2
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2
Þ � uyði; j � 1

2
; nþ 1

2
Þ�,

(3)
Fig. 1. Acoustic Yee unit cell in FDTD algorithm.
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uxði �
1
2
; j; nþ 1

2
Þ ¼ uxði �

1
2
; j; n� 1

2
Þ �

Dt

r0Dx
½pði; j; nÞ � pði � 1; j; nÞ�, (4)

uyði; j � 1
2; nþ

1
2Þ ¼ uyði; j � 1

2; n�
1
2Þ �

Dt

r0Dy
½pði; j; nÞ � pði; j � 1; nÞ�, (5)

where i, j, and n represent spatial coordinates and time; i.e., pðx; y; tÞ ¼ pðiDx; jDy; nDtÞ is written as pði; j; nÞ.
Eqs. (3)–(5) are updated in time using a leapfrog scheme [14]. First, u’s at time step nþ 1

2
are computed from

p’s at time step n and previous u’s at time step n� 1
2
. Then, p’s at time step nþ 1 are computed from u’s at time

step nþ 1
2
and previous p’s at time step n. This process is repeated until the temporal simulation has been

completed. Note that the leapfrog scheme does not introduce dissipation and is reversible in time because
of its central symmetry in both time and space. It may happen that a scheme built from symmetric and
reversible units may lose any appearance of symmetry, but Roe has shown that such a scheme is nevertheless
reversible [13].

The spatial and temporal sampling intervals, Dx;Dy, and Dt, cannot be left to chance. The formula that
ensures stability in an FDTD model can be found by means of Von Neumann’s criteria and is known as the
Courant condition [14],

cDtp
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=DxÞ2 þ ð1=DyÞ2
q . (6)

3. The time-domain impedance problem

To obtain realistic simulations impedance boundary conditions must be incorporated in the model.
However, the impedance ZðoÞ is usually defined in the frequency domain,

PðoÞ ¼ ZðoÞUðoÞ � n, (7)

where P and U are the Fourier transformed sound pressure and particle velocity, and n is a unit vector
perpendicular to the wall.

To incorporate the effect of the impedance on the discrete model and in order to optimize the algorithms, a
model of the impedance in terms of a filter structure can be used. A digital filter with an infinite impulse
response (an IIR filter) that approximates the frequency response of the impedance is usually employed.
Considering a discrete-time signal representation of the pressure and particle velocity, the relation between
them becomes

PðejoÞ ¼

PN�1
n¼0 cne

�jon

1�
PM�1

m¼1 dme�jom
UðejoÞ � n, (8)

where the frequency response of the impedance has been approximated by using an IIR filter. This
approximation of the frequency response to an IIR filter is usually carried out using Prony [24] or
Yule–Walker [25] algorithms.

The IIR filter structure in the frequency domain has a corresponding equation in the time domain [26]. The
equation

pðiÞ ¼
XN

n¼1

cnuði � nÞ � n�
XM�1
m¼1

dmpði �mÞ, (9)

where t ¼ iDt, can easily be incorporated in the discrete-time model [7,27]. However, such a method requires
storing both the sound pressure and the particle velocities at different time steps as coefficients, which leads to
a significant increase of the required computer memory since for each position N particle velocity and M � 1
pressure data points at the boundary cells must be stored from previous time steps.
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Furthermore, using such a function in a recursive convolution or using differential methods can be very
time-consuming (see Ref. [6] for a detailed comparison of such methods). Moreover, this modifies the FDTD
equations (Eqs. (3)–(5)); it can be complicated to obtain a general expression for an indeterminate number of
coefficients; and stability is not easy to ensure.

These considerations lead to the conclusion that implementation of an FDTD simulation incorporating
frequency dependent boundary conditions will require significant computer resources.

The purpose of this work is to find a simple and stable method of incorporating frequency dependent
boundary conditions in an FDTDmodel. The impedance model is approached using a rational form expressed
as a digital filter (independent of the FDTD equations), and by defining an interaction model, mesh and
boundary conditions are coupled without modifying the fundamental FDTD algorithm. A direct coupling
between mesh and boundary conditions would involve the output of one model being the input to the other
and vice versa. To incorporate a digital filter directly makes it possible to use the highly efficient structures of
IIR filters. For example, as mentioned above, Eq. (9) requires storing N þM � 1 values for each boundary
cell, but if the filter is incorporated directly it is only necessary to store N values (i.e., using Direct Form II [26]
and assuming N ¼M). With the proposed method, the potential of computationally efficient digital filters can
be used to reduce the cost of the entire algorithm.

However, such an implicit solution is potentially unstable [28]. To avoid such effects, a method based on the
mixing modelling strategy is proposed.

4. Mixing modelling strategy

If the initial boundary value problem involves coupled domains, each with its own partial differential
equation, each such equation can be solved separately. Assuming a seamless transition from one domain to the
other, there has to be a function that solves the global system of equations in the combined region and couples
it to the boundaries. The so-called mixing modelling strategy seems to be a good candidate [8]. All points on
the interface between the domains are arranged in pairs of ‘‘port variables’’ representing incoming and
outgoing variables. Petrausch et al. [29] have proposed to define a common interaction between the different
paradigms (for the 1D case), based on WDFs [9]. In this way the the coupling between adjacent domains or
between an interior space and its boundaries becomes a local phenomenon, realized as local communication
between two ‘‘WDF ports’’.

4.1. Wave digital filters

WDF is an elegant and efficient method for describing continuous networks in the discrete-time domain [9].
The main advantage of WDF is the discretization process. The discretization is carried out separately for each
network element by a bilinear transformation [26]. First, the variables yðnÞ and vðnÞ corresponding to some
physical variables are defined. They are known as the Kirchhoff variables. Originally, Fetweiss defined these
variables as voltage (yðnÞ) and current (vðnÞ) [9], but using the impedance analogy [30], they can be identified
as sound pressure and acoustic particle velocity, respectively. The interaction between this class of variables
can give rise to potential computational problems, e.g., delay-free loops or potentially unstable implicit
equations.

The delay-free loop problem is a computational handicap in the implementation of discrete systems.
Basically, it occurs when the computation of some values requires knowledge of the same value. A digital
structure with delay-free loops is physically impossible to achieve due to the finite time required to carry out all
arithmetic operations on a computer. And this is what occurs when the FDTD mesh and digital filter are
coupled: the input of the filter needs information of the pressure and particle velocity in the boundary cells;
and at the same time, these boundary cells need to know the output of the filter.

However, these instabilities can be avoided by introducing the so-called wave variables,

aðnÞ ¼ yðnÞ þ RvðnÞ, (10)

bðnÞ ¼ yðnÞ � RvðnÞ. (11)
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The variables aðnÞ and bðnÞ represent the outgoing and incoming wave variables, respectively, and propagation
information is inherent in them. This transition from the Kirchhoff variables to the wave variables is a key
point of the WDF theory, and their capability of avoiding potential instabilities has been widely analysed in
the literature [9]. By a proper choice of the ‘‘port resistance’’ R, WDFs offer the possibility of separating the
design of the block elements from the definition of their interaction by appropriate adaptor elements (see Ref.
[29] for details). Note that both in the electrical and the acoustic case, R has the dimensions of an impedance.

The separation and interaction in WDF terms ensure an unconditionally stable model when both parts (the
FDTD model of the sound field and the digital filter representation of the impedance) are independently
stable. The only source of instability, an implicit equation, is avoided using this variable conversion.
A complete review of this issue can be found in Refs. [9,31].

4.2. Coupling between FDTD and WDFs

In this section, an FDTD decomposition into WDF is presented. It involves determining incoming and
outgoing wave components at interface points of the FDTD simulations. In order to integrate Eqs. (10) and
(11) into an FDTD algorithm, yðnÞ and vðnÞ are identified as the sound pressure and the particle velocity. Thus
in the discrete-time domain Eqs. (10) and (11) become

aði; j; nÞ ¼ Ipði; j; nÞ þ Ruði; j; nÞ, (12)

bði; j; nÞ ¼ Ipði; j; nÞ � Ruði; j; nÞ, (13)

where I is the identity matrix. Note that a and b are vectors with dimensions as the pressure. In a 1D sound
field Eqs. (12) and (13) would, with R ¼ r0c, provide a ‘‘true’’ decomposition into two plane waves travelling
in opposite direction; here a and b represent ‘‘incoming’’ and ‘‘outgoing’’ wave field components in a more
loose sense. In the multidimensional case R does not correspond to the physical characteristic impedance of
the medium; it must be calculated in order to achieve this wave decomposition, as will be shown later.

The scope is to find a WDF decomposition at the interface point ss ¼ ½is; js� in the incoming and outgoing
components, where the sound pressure and the particle velocity components at ss are unknown at the actual
time step. These values depend on neighbouring values of the pressure and the particle velocity calculated
using the FDTD algorithm. They are found by means of the FDTD discretized version of the Euler equation,
Eq. (2).

As an example, a surface interface with a normal vector in the x-direction component is considered. Let the
medium be at iois. The goal is to find pðis; js; nÞ and uxðis; js; nÞ by means of bxðis; js; nÞ and axðis; js; nÞ, using
Eqs. (12) and (13). The particle velocity component uxði; j; nÞ cannot be obtained directly from the FDTD
scheme due to the staggered distribution of the variables, situated at ði � 1

2
; j � 1

2
; n� 1

2
Þ. One possibility could

be to determine this quantity as a temporal and spatial average of surrounding and previous points; cf. Eq. (4).
However, although this approach would seem to be reasonable, a set of different approximations of uxði; j; nÞ
have been implemented and compared, and the results show that case where the medium is at iois, the
approximating uxði; j; nÞ by uxði �

1
2
; j; nþ 1

2
Þ is a better solution. In case the medium is at i4is, uxði; j; nÞ ’

uxði þ
1
2; j; nþ

1
2Þ should be used.

First bxðis; js; nÞ is calculated. Note that the outgoing component depends on the pressure and the particle
velocity at the interface at the present time step, but still remains unknown. In the x-direction, Eq. (4) is used.
Solving for the pressure gives

pðis; js; nÞ ¼ pðis � 1; js; nÞ � r0
Dx

Dt
ux is �

1

2
; js; nþ

1

2

� �
� ux is �

1

2
; js; n�

1

2

� �� �
. (14)

Inserting Eq. (14) into Eq. (12) gives, with R ¼ r0Dx=Dt,

bxðis; js; nÞ ¼ pðis � 1; js; nÞ � R � uxðis �
1
2
; js; n�

1
2
Þ. (15)

This particular value of R ¼
ffiffiffi
2
p

r0c with cDt ¼ Dx=
ffiffiffi
2
p

(cf. the Courant condition, Eq. (6)) ensures that the
outgoing component depends only on previous and known values of the pressure and the particle velocity and
not on the boundary condition. The incoming component is obtained as the outgoing component in the other
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block. It is assumed that axðis; js; nÞ is known. Once the wave variables at interface points are known, Eqs. (12)
and (13) are used to obtain both the pressure and the particle velocity at these points at instant n. The same
process is necessary for calculating the y-component.

The approach used for the spatial average of the particle velocity introduces some errors (undesirable
reflections). One way of reducing these errors would be to use a more accurate approximation of the finite
differences in the Euler equation. A third-order finite-difference approximation provides a good trade-off
between accuracy and computational cost [23]

pðis; js; nÞ ¼
4

3
pðis � 1; js; nÞ �

1

3
pðis � 2; js; nÞ � r0

Dx

Dt
ux is �

1

2
; js; nþ

1

2

� �
�

4

3
ux is �

1

2
; js; n�

1

2

� �
þ

1

3
ux is �

1

2
; js; n�

3

2

� �� �
.

(16)

Following the same procedure used in deriving Eq. (15), the outgoing component is achieved as

bxðis; js; nÞ ¼
4

3
p is � 1; js; n
� �

�
1

3
p is � 2; js; n
� �

� R �
4

3
ux is �

1

2
; js; n�

1

2

� �
þ

1

3
ux is �

1

2
; js; n�

3

2

� �� �
, (17)

with R ¼
ffiffiffi
2
p

r0c. The two methods are compared in Section 5.
It should be emphasized that although third-order approaches (and more generally, all approaches of odd

order) are dispersive, this approach is only used at the boundary points and does not affect the propagation
properties of the FDTD method used to simulate the sound field. The signal/reflection ratio for the second-
order finite-differences approach has been measured and it is around �27 dB. However, using the third-order
finite-differences approach this ratio has been reduced to about �52 dB.

4.3. Interaction between digital filters and WDFs

In the present work, the coupling between digital filters representing the impedance model with WDF ports
has been implemented using the model introduced by Petrausch and Rabenstein [32]. Their solution is based
on Space State Systems (SSS); see Fig. 2(a).

Consider a digital filter representation of a rational expression of the impedance (Eq. (8)). This digital
filter is represented in Fig. 2(b), where z�1 represents a unit delay. Any linear system can be expressed in
terms of an SSS. In the present case a single input, unðnÞ ¼ uðnÞ � n (the normal component of the particle
velocity on the impedance surface), and a single output pðnÞ (the pressure on the same surface) are related as
follows:

zðnþ 1Þ ¼ AzðnÞ þ BunðnÞ, (18)

pðnÞ ¼ CzðnÞ þDunðnÞ. (19)

The vector zðnÞ is the system state (zðnÞ ¼ ½z1ðnÞ; z2ðnÞ� in the example shown in Fig. 2(b)). In this case, A is a
matrix, B and C are vectors, and D is a scalar (see Ref. [26] for more details).

Delay-free loops in the interconnection of the SSS with WDF (implicit equations) are avoided by the
following procedure: Eq. (19) is inserted into Eqs. (12) and (13), and the following system equations are
obtained:

aðnÞ ¼ CzðnÞ þ ðDþ RÞunðnÞ, (20)

bðnÞ ¼ CzðnÞ þ ðD� RÞunðnÞ. (21)

Instantaneous feedback is avoided with R ¼ D since bðnÞ becomes independent of unðnÞ. Thus,

unðnÞ ¼
1

2D
ðaðnÞ � CzðnÞÞ, (22)

bðnÞ ¼ CzðnÞ. (23)

As an example, a second-order IIR filter that represents the impedance is adapted to WDF ports; see
Fig. 2(b). According to space state theory, a second-order IIR digital filter is represented as an SSS by the
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Fig. 3. Interconnection of WDFs using an adaptor.

B

D

A

C

Fig. 2. (a) Discrete state-space description of a linear system. (b) Second-order discrete system in observable canonical form.

(c) Interaction of a second-order IIR filter with WDF ports.
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following equations:

zðnþ 1Þ ¼
�c1 1

�c0 0

 !
zðnÞ þ

d1 � d2c1

d0 � d2c0

 !
unðnÞ,

pðnÞ ¼ 1 0
� �

zðnÞ þ d2 � unðnÞ. (24)

The digital filter that represents the impedance realized with WDF ports is shown in Fig. 2(c).
4.4. Coupled model

In the coupled model, each block see the other block as a WDF port. In order to couple two WDFs
and avoid instabilities, it is necessary to use a two-port parallel adaptor to adapt the impedance and avoid
direct feedback loops; see Fig. 3. This adaptor (known as parallel adaptor in the WDF literature [28]) relates
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Fig. 4. Complete model of the proposed implementation by using a second-order approach. FDTD mesh and the impedance digital filter

are implemented separately. A two-port parallel adaptor connects the two models.

J. Escolano et al. / Journal of Sound and Vibration 316 (2008) 234–247 241
wave variables with different impedance ports. A matrix description for a parallel adaptor of two WDFs,
1 and 2, is

a1

a2

 !
R1 þ R2

� ��1 R2 � R1 2R1

2R2 R1 � R2

 !
b1

b2

 !
. (25)

Once the interaction between the models has been specified, the frequency dependent FDTD model shown in
Fig. 4 results.

5. Results

Some simulations have been carried out in order to examine the performance of the proposed method of
realizing a frequency dependent impedance boundary condition. Examples in 1D and 2D are presented. The
impedance model selected for these experiments is that of a hard-backed layer of porous material with a
thickness d [33],

ZðoÞ ¼ �jZpðoÞ cotðkpðoÞdÞ, (26)

where the material is modelled using Delany and Bazley’s empirical one-parameter model [34], that is, the
characteristic impedance and wavenumber of the material are given by

ZpðoÞ ¼ r0cð1þ 0:057X�0:754 � j0:087X�0:732Þ, (27)

kpðoÞ ¼ r0cð1þ 0:098X�0:7 � j0:189X�0:595Þ, (28)

where X ¼ r0o=ð2psÞ and s is the material’s flow resistivity.
In what follows a 0.1m thick layer of porous material with a flow resistivity of 1000 kg m�3s�1 is

considered. The coefficients of the digital filter are determined from the analytical expression of the impedance
using a Prony algorithm and an IIR digital filter of 40th order. The performance of the FDTD model is
examined by determining the plane wave reflection factor Rðo; yÞ [33],

Rðo; yÞ ¼
ZðoÞ cos y� r0c
ZðoÞ cos yþ r0c

, (29)

where y is the angle of incidence of a plane wave.
Note that the impedance spectrum obtained by the digital filter design should be as accurate as possible.

Even small differences between the reference impedance and the digital filter design can give rise to significant
differences between the physical (or theoretical) reflecting factor and the one obtained by the digital
impedance.

All the FDTD results presented here are based on a homogeneous discretization, with Dx ¼ Dy. The
sampling frequency is 40 kHz, and the source is a Ricker wavelet with a bandwidth of W ¼ f s=8 (this means 8
grid points per wavelength). These values have been selected in order to minimize the effects of dispersion. The
spatial sampling has been determined from the Courant condition (Eq. (6)). In order to avoid reflections from
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the other walls than the one under test, absorbing boundary conditions have been implemented. In these cases,
a Perfect Matched Layer [35] boundary condition has been chosen. It should finally be mentioned that the
influence of the mesh has been tested and shown to be negligible.

The FDTD model is tested by determining the reflection factor and comparing with the analytical
expression result based on a locally reacting impedance. The first test case is a 1D simulation where one side
contains an absorbing boundary condition and the other one the impedance model. The spatial sampling has
been selected assuming equality in the Courant condition (Eq. (6)) and in the 1D case, the results are free of
dispersion. The results are shown in Fig. 5. As mentioned in Section 4.2, better accuracy can be obtained by
increasing the order of the finite differences in the Euler equation. Fig. 5 compares the analytical solution with
two different FDTD solutions determined using a second-order and a third-order approach. It can be seen
that the third-order approach provides results in best agreement with the analytical reflecting factor; the
maximum error of the third-order approach is about 0.3 dB.

The next results have been determined using a 2D FDTD grid. In this case the mesh follows the scheme
presented in Section 4.2, and the Perfect Matched Layer algorithm is used for the absorbing boundaries, as in
the 1D case. It is interesting to compare the dependence of the angle of incidence with the behaviour of the
locally reacting model. In order to determine the reflection factor in the 2D mesh a point source and an
observation point are arranged such that the angle of incidence can be varied. The point source has been
placed sufficiently far from the impedance surface for the plane wave reflection factor to be indistinguishable
from the spherical reflection factor [36]. The difference between the incident and reflected spectrum must be
compensated for geometrical propagation losses; in the 2D case this is 1=

ffiffi
r
p

.
It can be seen that the results shown in Fig. 6 (continuous line) are similar to the analytical solution (dashed

line) at all angles (0�, 15�, 30�, 45�, 60�, and 75�). However, there are also some deviations. The differences are
partly due to the angle dependent artificial dispersion of the FDTD method [37] (even though the frequencies
have been selected for minimal dispersion effects); this effect can be observed in Fig. 6(d), which corresponds
to an angle of incidence of 45�, and the error is very small (in the FDTD mesh used here, this is the angle with
no dispersion). However, the most significant source of error is due to the WDF approach in the FDTD mesh
as described in Section 4.2: undesirable reflections can appear depending on the incident waveform. Because of
such reflections some differences between theoretical and observed reflection factor levels occur. The
maximum difference can be seen to be about 1 dB in most of the results; however, somewhat larger differences
are observed in Fig. 6(e), which corresponds to angle of incidence of 75�, particularly in the dips.

It is worth emphasizing that the results follow a locally reacting model without any artificial modification of
the boundary condition filter. This is due to the use of the impedance expression directly in the simulation.
Thus, a digital filter implementation of the reflecting factor [38,39], similar to the method based on digital
waveguide mesh [40,41], is avoided. The reflecting factor, Eq. (29), depends on the angle of incidence, and
Fig. 5. FDTD reflecting factor calculated with a 1D mesh. The continuous line represents the reflecting factor obtained with a third-order

approach; the dashed line is the reflecting factor obtained with a second-order approach and the dotted line is the theoretical result.
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Fig. 6. FDTD reflecting factor calculated with a 2D mesh (continuous line), compared with the theoretical reflecting factor (dashed line),

for the angles: (a) 0�, (b) 15�, (c) 30�, (d) 45�, (e) 60�, (f) 75�.
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therefore it would be necessary to calculate it in each iteration to obtain the appropriate locally reacting model
[42]. The proposed solution therefore represents a considerable reduction of the computational cost and a
comparatively higher efficiency based on hybrid models between FDTD and the digital waveguide mesh.

So far the model has been tested in an idealized situation where one single plane wave is incident on an
impedance wall. However, in realistic situations several plane waves may well be incident simultaneously. In
Fig. 7, a case where two simultaneous plane wave strikes the impedance surface at angles a1 ¼ 30� and
a2 ¼ 60� is shown.

In order to validate the linearity of the proposed method, three simulations are carried out, two in which the
two plane waves are launched separately, and a third one where the two plane waves are incident at the same
time. Two kinds of analysis are carried out: one related with the reflecting factor and another one related with
the impulse responses.
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Fig. 7. Set-up used for analysing the linearity of the proposed method.

Fig. 8. Spectrum of the reflecting factor obtained in the simulation (continuous lines) versus theoretical results (dotted lines): (a) at

receiver 1—(a.1) with plane wave at a1 ¼ 30�, (a.2) with plane wave at a2 ¼ 60�, (a.3) both plane waves at the same time, (a.4) adding both

separated plane waves; (b) at receiver 2—(b.1) with plane wave at a2 ¼ 60�, (b.2) with plane wave at a1 ¼ 30�, (b.3) both plane waves at the

same time, (b.4) adding both separated plane waves. Each spectrum is shifted �30 dB.
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First the results are analysed in the frequency domain. In Fig. 8(a), the results at receiver 1 appear (see
Fig. 7). In all the presented spectra the results from the simulations (continuous lines) are compared with the
expected theoretical results (dotted lines). Fig 8(a.1) shows the spectra when only the plane wave at a1 ¼ 30� is
emitted, and Fig 8(a.2) shows the spectra with the plane wave at a2 ¼ 60�. These results are identical to the
results shown in Figs. 6(c) and (d) and agree very well with the theoretical results. Fig. 8(a.3) shows the spectra
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that result when both plane waves strike the boundary at the same time. The linearity is demonstrated when
the result is compared with Fig. 8(a.4), that is, the result obtained if both independent plane waves are added
(Figs. 8(a.1) and (a.2)). Comparing Figs. 8(a.3) and (a.4) shows that there is no difference between them. This
confirms the linearity of the proposed method.

In the time domain the same procedure has been followed. However, the impulse responses waveform is
more sensitive to the inherent dispersion (in that case, to the angle dependent dispersion). For this reason, the
impulse responses represented in Fig. 9 have been represented following a minimum-phase consideration
(which means that they have the same magnitude response as the original systems; however, the energy is
concentrated near the start of the impulse responses and they have minimum group delay) and only delays
relative to the time difference of arrival have been taken into account; possible effects of the FDTD mesh
angular dispersion are not considered in this time-domain analysis. It can be seen that there is no significant
difference between the results and the expected theoretical results. The comparison between the results when
Fig. 9. Impulse responses obtained in the simulation (continuous line) versus theoretical results (dotted line): (a) at the receiver 1—(a.1)

with plane wave at a1 ¼ 30�, (a.2) with plane wave at a2 ¼ 60�, (a.3) both plane waves at the same time, (a.4) adding both separated plane

waves; (b) at receiver 2—(b.1) with plane wave at a2 ¼ 60�, (b.2) with plane wave at a1 ¼ 30�, (b.3) both plane waves at the same time,

(b.4) adding both separated plane waves. Each impulse response is shifted �20mPa.
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the two plane waves appear at the same time and the result of adding the corresponding separate results
demonstrates again the linear behaviour: there is no difference between the results.

6. Conclusions

A new method of incorporating frequency dependent absorbing boundary conditions in an FDTD model
has been proposed. In this model, the FDTD mesh and the boundary conditions (an impedance model defined
by means of a digital filter) are implemented separately and joined using an interface based on WDF. The
advantage of the method is that stability is ensured if both elements are separately stable, because of delay-free
loops (implicit equations) are avoided. Another important feature is that the definition of the digital filter can
be designed with highly efficient structures, reducing considerably the computational cost of the whole
algorithm; and even allowing to modify the coefficients and the order of the filter without affecting the
algorithm during the execution of the code. The proposed method is able to model a locally reacting
impedance without introducing any substantial increase of the computational cost.
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